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Introduction  

The problem of thermosolutal instability in fluids in porous 
medium is of considerable importance in Geophysics, Soil sciences, 
Ground water hydrology and Astrophysics. Many authors

5-10
 have 

demonstrated the stabilizing influence of magnetic viscosity on thermal 
convection, thermosolutal convection and gravitational convection. 
Recently, Sharma and Sharma

11
 have studied effect of suspended 

particles on couple-stress fluid in the presence of rotation and magnetic 
field. It was found that couple-stress has stabilizing effect and suspended 
particles have destabilizing effect.  
Aim of the Study 

 The aim of this Paper is to understand the combined effect of 
suspended particles and rotation on the onset of thermosolutal convection 
in an elastico-viscous fluid in a porous medium. 
Formulation of the Problem and Perturbation Equation  

 Here we study an infinite, horizontal, incompressible couple-
stress fluid layer of thickness d, heated and soluted from below so that, 
the temperatures, densities and solute concentrations at the bottom 

surface z = 0 are T0, 0 and C0 and at the upper surface z = d are Td pd 

and Cd respectively. This layer is heated and saluted from below such that 

a uniform temperature gradient  * =|dT/dz|) and uniform solute gradient 

*=|dC/dz|) are maintained. The system is acted on by a uniform vertical 
magnetic field  H 0,0,H


and variable gravity field    0 0g 0,0, g ,g g , g 0   

 is the 

value of g at z =0 and  can be positive or negative as gravity increases 
or decreases upwards from its value g0. 

 Letp,
e, , ', , ',g, , ,T,C, N,P and q(u, ,w)       

 

 
denote, 

respectively, the pressure, density, thermal coefficient of expansion, and 
analogous solvent coefficient of expansion, kinematic viscosity, couple-
stress viscosity, gravitational acceleration, magnetic permeability, 
electrical resistivity, temperature, solute concentration, electron number 
density, stress tensor taking into account the magnetic viscosity and fluid 
velocity. Then equations expansion the conservation of momentum, 
mass, temperature, solute mass concentration and equation of state of 
couple-stress fluid through porous medium are  
 

   e
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Abstract
In the present paper we investigated the thermosolutal 

instability of a couple-stress fluid in porous medium including 
simultaneously the effect of magnetic viscosity, suspended particles and 
variable gravity field. 



P: ISSN NO.: 2321-290X                           RNI : UPBIL/2013/55327                             Shrinkhla Ek Shodhparak Vaicharik Patrika 
                                                                                                                                                                 Vol-III * Issue-VIII* April-2016 
 

16 

 

E: ISSN NO.: 2349-980X 

  ptC 2

d

0 f

mN
E T q. T q . T k T

t c t

  
           

 

   (2.3) 
 

  ptC 2

d

0 f

mN'
E ' T q. C q . C k ' C

t c t

  
           

      (2.4)  

and     0 0 01 T T ' C C        
   (2.5)  

Assuming a uniform particle size, a spherical 
shape and small relative velocities between the fluid 
and particles the presence of particles adds an extra 
force term in the equations of motion (4.2.1), 
proportional to the velocity difference between the 
particles and the fluid. Since the force exerted by the 
fluid on the particles is equal and opposite to that 
exerted by the particles on the fluid, there must be an 
extra force term, equal in magnitude but opposite in 
sign, in the equations of motion for the particles. We 
assume that the distances between the particles are 
quite large compared with their diameter so that the 
interparticle reactions are ignored. The effects of 
pressure, gravity and Darcian force on the particles 
are negligibly small and therefore, ignored. Under the 
above assumptions, if mN is the mass of particles per 
unit volume, the equations of motion and continuity 
are  

    d
d d d

q 1
mN q . q KN q q

t

 
    

  


            (2.6)  

 d

N
.Nq 0

t


   


                  (2.7) 

Where K = 6 ',  '  being particle radius, is the 

stokes drag coefficient,  

    s s

0 f

C
x x, y,z ,E 1

C

 
     

 

is constant and E' 

is a constant analogous to E but corresponding to 
solute rather than heat; k and k' are the thermal 
diffusivity and solute diffusivity respectively, 𝜌s, cs, 𝜌0, 
cf denote the density and heat capacity of solid 
(porous) matrix and fluid, respectively; 

   d
q x, t  and N x, t


 denote filter velocity 

and number density of the suspended particles, the 
suffix zero refers to the values at reference level         
z = 0.  
Maxwell’s Equations Yield 

  2dH
H. q H

dt
    


  

 (2.8)  

and  .H 0 


   (2.9)  

where  
d 1

u.
dt t


  
 


stands for the convection 

derivative 
For the magnetic field along the z-axis, the 

stress tensor P


taking into account the magnetic 
viscosity (Vandakurov

13
) has the components 

xx 0 0

xy yx 0 0

xz zx 0 0

yz zy 0 0

yy 0 0 zz

u
P ,

y x

u
P P ,

x y

v w
P P 2 ,
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x z
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y x

  
     

   
  
     

   


   
       

   
  
     

   


        
    (2.10)

 

Where 
0 0 H

H

NT
,

4
   


being the ion-gyration frequency 

while N and T are number density and temperature of 
ions respectively. The steady sate solution is  

   d
q 0,0,0 ,  q 0,0,0 , 
 

 

0 0T z T ,C 'z C ,     

 0 01 z ' 'z , N       constant  (2.11)  

Let

     x y zd
, , , p,q u, v, w ,q l, r,s  and h h ,h ,h   

  

denotes, respectively, the temperature T, solute 
concentration C, perturbations in density , pressure 
p, fluid velocity (0,0,0), and magnetic field 

 H 0,0,H .


The change in density , caused by 

perturbations  and  in temperature and solute 
concentration is given by  

    0 '       (2.12) 

Then the linearized perturbation equations become  

  2 2e
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p p g h H q
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pt pt

'

C C
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mN mN
b ,b '

c c
 

 

 

and w, s are the vertical fluid and particle velocities.  
4.3 The Dispersion Relation  

 Analyzing the disturbances into normal 
modes, we assume that the perturbation quantities 
are of the form  
             z x yw,h , , , , W z ,K z , z , z ,Z z ,X z exp ik x ik y nt             

                           (3.1) 
where kx and ky are the wave numbers along x- and y- 

directions, respectively.  
1/2

2 2

x yk k k   is the 
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resultant wave number and n is the growth rate, which 
is, in general, a complex constant.  

x y x y y xik v ik u and =ik h ik h     denote, 

respectively, the z-components of vorticity and current 
density.  
Using equation (2.12) and expression (3.1), equations 
(2.13) – (2.19) in  
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Where we have put a = kd, 
2 2F v'/ d ,  =nd / v,  x/d=x*, y/d=y*,    
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lp v / k is thermal Prandtl,  

p2 = v/k is the magnetic Prandtl number,  
'

lq v / k '  is the Schmidt number and the 

superscript* is suppressed. 

 Eliminating  and 𝜏 between equations 

(3.2), (3.4) and (3.5), we obtain on simplification  
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(3.8) 
Substituting the value of 

4 4

0 0R g d / k  and  S=g ' 'd / k '       in 

equation (3.8), we get  
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 (3.9) 
Substituting the value of K from equation (3.6) in 
equation (3.9) we get 

     
 

2
2 2 2 2 2 2 2 l

2 2
l l l l

BM W
1 F D a D a D a W R a

1 1 D a E p

      
           

            

 
 

 
 

2 2 22 2
2 2 20 el

2 2 ' ' 2 2
l 0l l 2

D a D Wd H dB' W
S a 2D a DZ  0

1 4D a E q D a p

       
        

            

(3.10) 

Substituting the value of 2 2

e 0Q H d / 4    in equation 

(3.10), we get  
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                                                                (3.11) 
 Substituting the value of X from equation 
(3.7) in equation (3.3), we obtain on simplification

 
 

 
2

2
2 2 2 20

2 2
l 2

M QD
1 F D a Z 2D a DW

1 dD a p

     
         
             

                                                                            (3.12) 
Substituting the value of Z from equation (3.12) in 
equation (3.11), we get 
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Substituting the value of 
2 2

0U /   in equation 

(3.13) we obtain on simplification  
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   2 2 2 2 2

l l 2D a E q  D a p D W 0             (3.14) 

 Here also we consider the case where both 
boundaries are free as well as perfect conductors of 
heat and solute concentration, while the adjoining 
medium is perfectly conducting. The appropriate 
boundary conditions, with respect to which equations 
(3.2) – (3.7) must be solved are (Chandrasekhar

1
) 

2W D W X DZ 0,   =0, =0, at z = 0 and 1       
K = 0 on perfectly conducting boundary 
and hx, hy, hz are continuous. 

The case of two free boundaries though little 
artificial, is the most appropriate for stellar 
atmospheres (Spiegel

12
). Using the above boundary 

conditions, it can be shown that all the even order 
derivatives of W must vanish for z =0 and z =1 and 
hence proper solution of equation (3.14) 
characterizing the lowest mode is 

W = W0 sin z 

where W0 is constant. Substituting (3.16) in (3.14) and 

letting R1 = R/4, 
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S1= 4 2 2 2 2 2

1 l lS/ ,  Q Q / ,  x=a / ,  i /  and F F,          we 

obtain the dispersion 
 Relation 
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(3.17) 

 Equation (3.17) is the required dispersion 
relation studying the effects of of magnetic field, 
stable solute gradient, magnetic viscosity, varying 
gravity field and suspended suspended particles on 
thermosolutal instability of couple-stress fluid in the 
presence of vertical magnetic field in porous medium 
Stability of the System and Oscillatiory Modes  

 In this section, we consider the possibility of 
oscillatory modes, if any, on the couple-stress fluid 
due to the presence of magnetic field, suspended 
particles, stable solute gradient, magnetic viscosity 
and varying gravity field.  
 Multiplying equation (3.2) by W*, the 
complex conjugate of W and making use of equations 
(3.4) and (3.5), we obtain on simplification  
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Solving the equations (4.1) and (3.3), we have 
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Making use of equation (4.2) and (3.6), we get  
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(4.3) 

Solving the equations (4.3) and (3.7), integrating over 
the range of z and making use of the boundary 
conditions (3.15), we obtain on simplification  
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 Rewriting equation (4.4) in the form  
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The integrals I1 – I14 are all positive definite. Equation 
(4.5) can be written as 
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Substituting 0i ,   where 𝜎0 is real, in equation 

(4.7), we obtain on simplification 
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Equating the imaginary parts of equation (4.8), we 
obtain  
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 Equation (4.9) implies that 
0 00 or 0     

which means that modes may be non-oscillatory or 
oscillatory. In the absence of suspended particles, 
magnetic field, magnetic viscosity, stable solute 
gradient, varying gravity field and couple-stress, 
equation (4.9) reduces to  

2

0l
0 l l 5

g ka1
E p I 0
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and terms in bracket are positive definite. Thus 𝜎0 = 0, 

which means the modes are non-oscillatory and the 
principle of exchange of stabilities is satisfied for a 
porous medium in the absence of suspended 
particles, magnetic field, magnetic viscosity, stable 
solute gradient, varying gravity field and couple-
stress. The oscillatory modes are introduced due to 
the presence of suspended particles, magnetic 
viscosity, stable solute gradient, varying gravity field, 
magnetic field and couple-stress which were non-

existent in their absence. 
The Stationary Convection  

 Equation (4.3.17) for stationary convection 
(i.e. 𝜎= 0) reduces to 
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 which expresses the modified Rayleigh 
number Rl as a function of the dimensionless wave 
number x and the parameters Q1, U, S1, B and F1.  
 To study the effects of suspended particles, 
stable solute gradient, magnetic viscosity, magnetic 
field and couple-stress on R1; we examine the 
behaviour of 

l l l l l
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respectively. Equation 
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 which is negative implying thereby that the 
effect of suspended particles is to destabilize the 
system when gravity increases upwards from its value 
g0 and stabilizes the system when gravity decreases 
upwards, if  
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For equation (4.5.1), we get  
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Equation (5.3) show that stable solute gradient has 
stabilizing effect 
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 From equation (4.5.4), we see that magnetic 
viscosity has stabilizing effect on the system in porous 
medium as gravity increases upward from its value g0.  
It is evident from equation (5.1) that  
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(5.5) 
which implies that magnetic field stabilizes the system 

when gravity is increasing upwards i.e. (>0) and 
destabilizes the system when gravity is decreasing 
upwards.  
Also from equation (5.1), we get 
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(5.6) 
Result and Discussion 

 Equation (5.6) show that couple-stress has 
stabilizing or destabilizing effects on thermosolutal 
instability as gravity decreases or increases upwards. 
 The dispersion relation (5.1) is analysed 
numerically. Graph have been plotted by given some 
numerical values to the parameters, to depict the 
stability characteristics. In Fig. 1, R1 is plotted against.  

 B for f1 = 0.6, S1 = 7, = 0.6,  = 1, U = 20, Q1 = 15 
and B' = 2 for fixed wave numbers x = 0.4 and x = 0.7. 
For the wave numbers x = 0.4 and x = 0.7, suspended 
particles have a destabilizing effect. In figures 2, R1 is 

plotted against S1 for F1 = 0.6, = 0.6, Q1= 1, U = 20, 

Q1 = 15, B' = 2 and B = 3 for fixed wave numbers x = 
0.4 and x = 0.7. This shows that stable solute gradient 
has a stabilizing effect. In figures 3, R1 is plotted 

against U for F1 – 0.6, = 0.6,  = 1, Q1=15, B' = 2, B 
= 3 and S1 = 7 for fixed wave numbers x = 0.4 and x 
=0.7. The Rayleigh number increases with increase in 
magnetic viscosity parameter showing its stabilizing 
effects on the thermosolutal instability. In figures 4, R1 

is plotted against Q1 for F1 = 0.6, .  
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= 0.6,  = 1, B' = 2, B =3, S1 = 7, and U = 20 for fixed 
wave numbers x = 0.4 and x =0.7. This shows that 
magnetic field has a stabilizing effect. In figures 5, R1 

is plotted against F1 for  = 0.6,  = 1, B' = 2, B = 3, S1 = 

7, U = 20 and Q1 = 15 for fixed wave numbers x = 0.4 

and x = 0.7. This shows that couple-stress has a 

stabilizing effect.  
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