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Effects of Suspdended Particles,
Magnetic Viscosity and Variable Gravity
Field on the Thermosolutal Instability of
Couple-Stress Fluid in Porous Medium

In the present paper we investigated the thermosolutal
instability of a couple-stress fluid in porous medium including
simultaneously the effect of magnetic viscosity, suspended particles and
variable gravity field.

Keywords : Suspended Particles, Porous Medium,Rayleigh-Taylor
Instability, Magnetic Viscosity, Thermosolutal Instability
Introduction
The problem of thermosolutal instability in fluids in porous
medium is of considerable importance in Geophysics, Soil sciences,
Ground water hydrology and Astrophysics. Many authors®™® have
demonstrated the stabilizing influence of magnetic viscosity on thermal

Archana Shukla convection, thermosolutal convection and gravitational convection.
Research Scholar, Recently, Sharma and Sharma'' have studied effect of suspended
Deptt.of Mathematics, particles on couple-stress fluid in the presence of rotation and magnetic
Nehru Gram Bharti University, field. It was found that couple-stress has stabilizing effect and suspended
Allahabad, U.P. particles have destabilizing effect.

Aim of the Study

The aim of this Paper is to understand the combined effect of
suspended particles and rotation on the onset of thermosolutal convection
in an elastico-viscous fluid in a porous medium.
Formulation of the Problem and Perturbation Equation

Here we study an infinite, horizontal, incompressible couple-
stress fluid layer of thickness d, heated and soluted from below so that,
the temperatures, densities and solute concentrations at the bottom
surface z = 0 are Ty, pp and Co and at the upper surface z = d are Tq pd
and Cq respectively. This layer is heated and saluted from below such that
a uniform temperature gradient B * =|dT/dz|) and uniform solute gradient
B*=|dC/dz|) are maintained. The system is acted on by a uniform vertical

Anupama Dixit magnetic field (0,0, H)and variable gravity field 5, o o0 o gjis the
Assistant Professpr, value of g at z =0 and A can be positive or negative as gravity increases
Deptt.of Mathmatics, or decreases upwards from its value go.

Kumar Manglam University, Letp, p, o, o', v, 11,9, 1, m, T, C, N, P and q(u, v, w) denote,

Gurgaon . . - .
9 respectively, the pressure, density, thermal coefficient of expansion, and

analogous solvent coefficient of expansion, kinematic viscosity, couple-
stress viscosity, gravitational acceleration, magnetic permeability,
electrical resistivity, temperature, solute concentration, electron number
density, stress tensor taking into account the magnetic viscosity and fluid
velocity. Then equations expansion the conservation of momentum,
mass, temperature, solute mass concentration and equation of state of
couple-stress fluid through porous medium are
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E3T+(q.V)T+ o [sg+qd.V}T:kV2T
ot PoCs ot
(2.3)
Ot (Gvica™el 2 ¢ Ylookvie 9
E atT+(q.V)C+ s [sat+qd.V}C_k vZC
and p=po[1-a(T-T,)+a'(C-C,)] (2.5)

Assuming a uniform particle size, a spherical
shape and small relative velocities between the fluid
and particles the presence of particles adds an extra
force term in the equations of motion (4.2.1),
proportional to the velocity difference between the
particles and the fluid. Since the force exerted by the
fluid on the particles is equal and opposite to that
exerted by the particles on the fluid, there must be an
extra force term, equal in magnitude but opposite in
sign, in the equations of motion for the particles. We
assume that the distances between the particles are
quite large compared with their diameter so that the
interparticle reactions are ignored. The effects of
pressure, gravity and Darcian force on the particles
are negligibly small and therefore, ignored. Under the
above assumptions, if mN is the mass of particles per
unit volume, the equations of motion and continuity
are

mN{%+%(ad.V)ad}:KN(a—ad) (2.6)

ON -\ 2.7
Where K = 61tpvn’, 1'being particle radius, is the
stokes drag coefficient,

i:(x,y,z),Ezg(l_g) PG is constant and E'
oCs

is a constant analogous to E but corresponding to

solute rather than heat; k and k' are the thermal

diffusivity and solute diffusivity respectively, ps, Cs, po,

¢t denote the density and heat capacity of solid

(porous) matrix and fluid, respectively;

ad (X,t) and N(Y,t) denote filter velocity

and number density of the suspended particles, the
suffix zero refers to the values at reference level
z=0.

Maxwell’s Equations Yield

dH

—(H a 2H 2.8
€ gt (H.V)q+8nV H (2.8)
and V.H=0 (2.9)
where d _ ﬂ+l(a_v)stands for the convection
dt ot e
derivative

For the magnetic field along the z-axis, the

stress tensor Ptaking into account the magnetic
viscosity (Vamdakurov1 ) has the components
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P, =P, = pPoVo o oy ’
ov A
P, =P, =—2 —_—+—— |,
xz Zx PoVo [ oz = j
oWV ou
P, =P, = 2poVvo 8_X _32 s
Py, = PoVo Z—U+Z—VJ,PZZ=O
<
Y (2.10)
Where NT o, being the ion-gyration frequency
il

V, =
PoVo 4o,
while N and T are number density and temperature of
ions respectively. The steady sate solution is

q=(0,0,0), q,=(0,0,0),
T=-—Lz+T,,C=—L'2+C,,

p=p,(1+afz—a'B'z), N, =constant (2.11)
Let
0,7,0p,8p,9(u,v,w),0,(Lr,s) and h(h,,h ,h,)

x1 iyt
denotes, respectively, the temperature T, solute
concentration C, perturbations in density [1, pressure
p, fluid velocity (0,0,0), and magnetic field
ﬁ(O'O'H)_The change in density p, caused by

perturbations 6 and y in temperature and solute
concentration is given by
dp=—p,(a®—a'y) (2.12)
Then the linearized perturbation equations become
Ea—q:—iVSp—iVMQ[S—p}L(Vxﬁ)xﬁ{v—ﬂvzjv?a
Po

G Po Po Anp, Po
KN, /(= = 2.1
+ O(qd_Q) ( 3)

€Pg
v.q=0 (2.14)
MmN, 8;(‘1 — KN, (d—d,) (2.15)
(E+bs)%=[3(w+bs)+kvze (2.16)
(E'+ b's)%:ﬁ'(w+b's)+k'vzy (2.17)
oh _ Hv\a 2 2.18
SE—(H.V)quanV h (2.18)
and V.h = O (2.19)
where
b MmN b mN'Cm
PoCs ' PoCs

and w, s are the vertical fluid and particle velocities.
4.3 The Dispersion Relation

Analyzing the disturbances into normal
modes, we assume that the perturbation quantities
are of the form
[W,hz,e,y,c,i]:[w(z),K(z),G)(z),l"(z),Z(z),X(z)]exp[ikxx+ikyy+nt:|

(3.1)

where ky and ky are the wave numbers along x- and y-

directions, - respectively. I = (k2 + k2 )1/2 is the
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resultant wave number and n is the growth rate, which
is, in general, a complex constant.

¢ =ik,v—ik,u and =ik h, —ik h denote,
respectively, the z-components of vorticity and current
density.

Using equation (2.12) and expression (3.1), equations
(2.13) - (2.19) in

1+ M1 p(p2-a?) (D -a2) (DZ—aQ)W+M
€ 1o+l

\%

[MJ(ZDZ ?)Dz - HeHd( ~a?)DK =0 (3.2)

v Anp,v

HH M }F(Dz#)z7(D27az)}zz[ﬁ](ZDz+az)Dw+ wHd
€ 1o+l vd 4

TPV
(3.3)

(D2—az—Elplc)(a—_[de][wJW (3.4)
k l+to

(0o (B 2m w09

(D? —a® —p,o)K = ,@_:] bw 3:6)

and
(D?*-a%—p,c)X = [HdJDz 3.7
ne

Where we have put a = kd,

F=v/d? o=nd®/v, x/d=x*, yld=y*,

zld=z*, 'c=m,
k

T, = —2, M— °,B:b+1, B'+b'+1 E, =E+be, E,=E'+b'e,
d Po

F=—" _ p*—d9 _dband
pod v dz

p,=v/k is thermal Prandtl,

p2 = vik is the magnetic Prandtl number,
g, =V/K' is the Schmidt
superscript* is suppressed.

Eliminating ®and T between equations
(3.2), (3.4) and (3.5), we obtain on simplification

number and the

o M) e v e sy OheBod (Bt W
L[lthlc+1]+F(D ! ) (D ! ) (D ! )W vk Llﬂp}(DZ—az—E,p,G)
_glapaidt(Breo) W [j] 2 BHD (2 2\ -
LW klﬁ-T‘(s)(Dz—élsz‘,l‘J‘,o)Jr v (ZD ) bz dnpv (D )DK_O
(3.8)
Substituting the value of
R =g,apd*/vk and S=g,a'B'd*/ vk’ in

equation (3.8), we get

[g[u t‘2A+1J+F(DZ—az)z—(Dz—az)}(Dz—az)W—RXaz[Hj(Dz EN

1+10 -a’-Epo)

[ B+10 W vod ) pHd
+Sha [Tnc ]7@2_&2_% ) ( : j(ZD +a’)DZ- " (o?

TPV
(3.9
Substituting the value of K from equation (3.6) in
equation (3.9) we get

-a’DK =0)
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. M U P ,[B+10 w
e R e e

2 .2\M2
1918’ [B”"]Lﬂ [ dj(2D2+a)DZ+ id (- )OW
l+1o (Dz—élZ—E,q| ) v 4npyvne (Dz—aZ—pzs)
(3.10)

Substituting the value of Q =H9H2d2 /4TEPOVTlin equation
(3.10), we get

c M 2 2\ 2 2 2 2 2 B+1o W
{I[HWH}F(D -a’) -(D*-a )}(D -a’)W-Rha [1”,; ji(Dz—az—E‘p‘c)

+sxa2£—B'”'“]L” [V dj(2D2+a )pz+2 (D-ajow
l+10 )(D*-a’-Ego) \ v ¢ (D*-a’-p,o)
(3.11)

Substituting the value of X from equation
(3.7) in equation (3.3), we obtain on simplification

° M 2 2)? QD’ _[ Yo 2, 52
L[l+flc+l}+F(D ) +S<D2_az_p26)}z (Vd)(zo +a’)DW
(3.12)

Substituting the value of Z from equation (3.12) in
equation (3.11), we get

{9(1+ M 1]+F(Dz —at)’ -(D? 7a2)}(DZ ~a?)W-Rha’ [M]m

€ 10+ l+10

2
vV, 2
(7“] (20°+a*) D’W

S’ B'+‘c‘<ﬂ W R
- [TmJ(DZ—aZ—E;q;c) o oM Vo r(r o (o) QD
;[umﬂjw(o -a*) -(D*-a )+£(D27azip26)
D’ -a*)D’W
.Q ( ) o (3.13)

€ (D2 —a? —sz)
Substituting the value of U=V:/v’in equation
(3.13) we obtain on simplification

Lo tor oo~ -+-cs
(0*-a*-p,o)(D*-a)- Rxa[B”G](DZ-aZ-E‘,q“ (0 -2 -pyo )+s,a[B”'“j

l+10

2

(DZ—az—E‘p,cs)(DZ—az—pzc)+%(D2—a2—E,p‘c)( -a’-Ego) }
)

{{g(u Tlgﬂ+1]+F(D2—az)2 —(Dz—a2)+@%'ip2)}w+u(zoz+a
(D*-a’-Eq,0) (D*-a’—p,c)D’'W=0  (3.14)

Here also we consider the case where both
boundaries are free as well as perfect conductors of
heat and solute concentration, while the adjoining
medium is perfectly conducting. The appropriate
boundary conditions, with respect to which equatlons
(3.2) — (3.7) must be solved are (Chandrasekhar )
W=D’W=X=DZ=0, ©=0,'=0,atz=0and 1
K = 0 on perfectly conducting boundary
and hy, hy, h; are continuous.

The case of two free boundaries though little
artificial, is the most appropriate  for stellar
atmospheres (Splegel ) Using the above boundary
conditions, it can be shown that all the even order
derivatives of W must vanish for z =0 and z =1 and
hence proper solution of equation (3.14)
characterizing the lowest mode is
W =W, sin nz
where W, is constant. Substituting (3.16) in (3.14) and
letting R; = R/’
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Si=s/ Q1=Q/Tc2, x=a’/?, i,

obtain the dispersion

Relation

R,xx:[é:ii:;‘:‘;][i%[u iclt‘l\:erlJJrF,(1+x)2+(l+x)}(l+x)(l+x+E,p,is,)
Slkx(B +ioT,n’ ) (1+x+E,pjic))

N (B + ic,‘c,nz) (1+ X + E;q',ic;,) "

1+icTn’
B+iotn’ (

=c/n’ and F = n’F, We

U(x-2)" (L+x+Epjic, ) (1+X +p,ic,)
M j+l:,(1+x)z+(1+x)}+%

. io,
1+x+p2|c,){?'[l+ iotn? +1
[

L[ 1+ io,t,? )| Q (1+x)(1+x+E,pjic,)
B+ic,t,n? e(1+X+p,ic))

(3.17)

Equation (3.17) is the required dispersion
relation studying the effects of of magnetic field,
stable solute gradient, magnetic viscosity, varying
gravity field and suspended suspended particles on
thermosolutal instability of couple-stress fluid in the
presence of vertical magnetic field in porous medium
Stability of the System and Oscillatiory Modes

In this section, we consider the possibility of
oscillatory modes, if any, on the couple-stress fluid
due to the presence of magnetic field, suspended
particles, stable solute gradient, magnetic viscosity
and varying gravity field.

Multiplying equation (3.2) by W?*, the
complex conjugate of W and making use of equations
(3.4) and (3.5), we obtain on simplification

{2(14_ M j+F(DZ—aZ)2_(DZ—a2):|(D2 )WW* goxka [1+r,c]
€ 1o+l v (B+1o
2 gra'k'a’( 1+16 )/ L v,d
(D _az_ElpIG)Qz+T(7B'+1I'|GJ(D —-a —E,q,c)rz+(T]
(2D2+a2)DZW*—“97Hd(D2—a2)DK n=0) (41
4mp,v

Solving the equations (4.1) and (3.3), we have

a M 2 2\2 (M2 a2 *gkka l+10
e e s ]

+gokocll(a [14—10](')2_& “Ego ) [ﬂj
VB B+10 v

u Hd® _ pHd
4np,v Amp,v

(D*-2"-Epc)®’

(2D*+a%)z* - (D*—a*)DKw'=0

(4.2)
Making use of equation (4.2) and (3.6), we get

{%[uTI(’:’LJW(DZ7a2)27(027a2)}(Dz “Jww- goka® [ﬂ]

v (B+10
gra'k'a’( 1+10 v d
(Dz—az—E.P|U)®z+OT ?rllo- (D Eqo ) \0/

2 Z_HeHda HeNnE 2.2 2.2 2 _
a’)z pi sz+74npov(D a’) (D’ -a”—p,a)K* =0
(4.3)

Solving the equations (4.3) and (3.7), integrating over
the range of z and making use of the boundary
conditions (3.15), we obtain on simplification

{G[l+ M
el 1o+l

0

1

J(Iow P +a? |vv|2)dz+Fj‘(| D*W [* +3a* | D°W [’ +a° | W [* )iz
& TG+ 0 °

(2D2 +

ﬂj(|DW| +a’ [WP dz+F_[ (ID'WF +32° | D'W [ +a° | W [ iz
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gha'k'a’(1+to \§ . e
o S 1 l(or e ) oI s 2

(ID*K[ +2° | DK +a* |[K )+ (| DK +a?| |<|Z)dz+d{9[1+ M H
€ T+l
1 1 2
(1ZF)dz+Fd? [(1D*Z +2a* | DZ[* +a* | Z oz + o [ (| DZ* +a2|2|2)dz+‘j;”78d
0 0

PV
(4.4)

— ot

Ot ©

[(IDXP +a® | X ) +p,o(1 X ) oz

Rewriting equation (4.4) in the form
2
F[n M HII+FI2+I3—g°Mka [1+T'Gj[l4+E|p|0*ls]+
el 1o+l

B+1o

gora'k'a®( 1+tc . H.ne
- — || It +E >, |+l + *lg |+
vB' B'+1t0 |:6 e 7:| 4Ttp0V[8 P2 g]

* 2
& 1M Ran, 4, + Hened
€ T0*+1 Amp,v

Where
1
= [(IDWF +a® | W[ )dz,
o]

[I13 + p26|14] =0

(4.5)

j (ID*W [ +3a* |DW[* +3a° | D*W [* +a° | W [* ) dz
0

=j(| D’W ? +a® | W [ +2a’ | DW | )dz,
=](1eF)dz
=[(ITF)ez,

l,= j(| DK [ +a°| K [*)dz

0

=[(IDef +a’|®f)dz,

o'—;»—-

ot—~r ot—,»a

(IDrp +a®|TF)dz,

o'—.»a

(ID°KP +a*[KP +2a° | DK )dz,

||
c'—.H o —

(1ZP)dz, 1=j(\ D’Z[ +a*| Z[ +2a°| DZ[ ) dz,
0

10

1
. =[(1DZf +2*|Zf)d

0

1, =_([(|X|2)dz=0

The integrals 11 — |14 are all positive definite. Equation
(4.5) can be written as

F[h M Hll +FL 41—
el 1o+l

= j(| DK [ +a’ | X[ )dz
0

(4.6)

"1a2

gohoka? (mcj[l Epl, ]+go7»oc k'a
vp vp'

B+t
l+10 e BE 1 c M 2
[B'Jr‘c,c)[la Egol, |+ . [| p,ol, ]+d{ s[hlfr,cﬂlwﬂzd I,
ed?
+o|2|12+—'i311 [y +p,ol,]=0 4.7)
TPV

Substituting G =
(4.7), we obtain on simplification

ﬂ1+ M Mriio, | +F, 41, gohaka’® (r,lc0 -
e | L(to) L+(vo,) vp LBH 1602

IGO,where oo is real, in equation

B+ rco) }

B+ rcg)

2

e g,ha'k'a’ | tio, (B- ) B'+(t,0,) une

[l ~Epiool}+ vB' {B +(160)2 B? +(1:00)2 [s IQIIGOJ-FMTQOV

i 2

[1; =paicyl, ] - G" M Moy Ly e, i, ¢ B0

1+(‘t|00) 1+(t0,) dmpyv
[I13+p2icoll4]:0 (4.8)
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Equating the imaginary parts of equation (4.8), we
obtain

LM +(n00)* (| e ,gumkaz{ w(B-1)
U|: 5{1+(T|Go)2} (II Im) vB B? +(r,co)2 L

B (xio)” |

Bz+(1:,csu)2 5‘L
1Al " ' 2
+goka ka { tI(B 1) _E‘|q' B+(t|00) |7}_ RO p2|9+

-Ep

6

VB |B?+(t0,) 'B2+(r0,) | 4mpov
2
Hened Pl [=0 (49)
4mp,v

Equation (4.9) implies that c,=00rc, =0

which means that modes may be non-oscillatory or
oscillatory. In the absence of suspended particles,
magnetic field, magnetic viscosity, stable solute
gradient, varying gravity field and couple-stress,
equation (4.9) reduces to

2
Go(l_.+gokocka E.p.lsJ=0 (4.10)
€ vp

and terms in bracket are positive definite. Thus o = 0,
which means the modes are non-oscillatory and the
principle of exchange of stabilities is satisfied for a
porous medium in the absence of suspended
particles, magnetic field, magnetic viscosity, stable
solute gradient, varying gravity field and couple-
stress. The oscillatory modes are introduced due to
the presence of suspended particles, magnetic
viscosity, stable solute gradient, varying gravity field,
magnetic field and couple-stress which were non-

existent in their absence.
The Stationary Convection

Equation (4.3.17) for stationary convection
(i.e. 6= 0) reduces to

1 F,(1+x)4+(1+x)3 U(x—2)2(1+x)2 +Q‘(ler)
B AX

}»x{ﬁ(l+x)3+x(1+x)2+g} &hx
&

R, = +SB'+

which expresses the modified Rayleigh
number R; as a function of the dimensionless wave
number x and the parameters Qi, U, S1, B and F;.

To study the effects of suspended particles,
stable solute gradient, magnetic viscosity, magnetic
field and couple-stress on Rj;; we examine the
behaviour of

ﬁ ﬂ ﬁ ﬁ and ﬁrespeetively. Equation
dB ' ds, ' dU 'dQ, dF,
(5.1) yields.

F,(1+x)3+(1+x)z+M+& +SB'

F,(1+x)3+(l+x)z+& €
€

dr, 1 (1+x

B B ax

(5.2)
which is negative implying thereby that the
effect of suspended particles is to destabilize the
system when gravity increases upwards from its value
go and stabilizes the system when gravity decreases
upwards, if
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2
brx F(L+x) +(1+x)" + U(x=2) (+x) Q2 >SB'
Ax F,(1+x)3+(1+x)2+g €
€
For equation (4.5.1), we get
dR, _B’ (5.3)

ds, B
Equation (5.3) show that stable solute gradient has
stabilizing effect

dr, (x—2)* (1+x)*
du Bxx{lr, (1+x)° +(1+x)? +%}
€

From equation (4.5.4), we see that magnetic
viscosity has stabilizing effect on the system in porous
medium as gravity increases upward from its value go.
It is evident from equation (5.1) that
dR, _ (1+x)
dQ, Bixe

(5.4)

[oF? (L) + 265 (LX) +8(L4x)" +2QF (1+x)"+2Q, (1+x)' |

€
(5.5)
which implies that magnetic field stabilizes the system
when gravity is increasing upwards i.e. (A>0) and
destabilizes the system when gravity is decreasing
upwards.
Also from equation (5.1), we get

dR, _ (1+ x)4
dF, ~ xB

+Q7 ~U(x=2)" (L x)&* || Fe(1+x)" +2(1+x) +Q1T
(5.6)

+%12—8U(X—2)2 (1+ x)}x[lﬁ (1+ x)3 +(1+ X)2 4 Q, ]2

[Ff (14+%)° €% + 2Q)F (1+x)° 62+ 2F (1+x)° 62 + (14 x) 62+ 2Q, (1+x)’ &

Result and Discussion

Equation (5.6) show that couple-stress has
stabilizing or destabilizing effects on thermosolutal
instability as gravity decreases or increases upwards.

The dispersion relation (5.1) is analysed
numerically. Graph have been plotted by given some
numerical values to the parameters, to depict the
stability characteristics. In Fig. 1, R; is plotted against.
Bforfi=06,S:1=7,e=06,2=1,U=20,Q; =15
and B' = 2 for fixed wave numbers x = 0.4 and x = 0.7.
For the wave numbers x = 0.4 and x = 0.7, suspended
particles have a destabilizing effect. In figures 2, Ry is
plotted against S; for F1 = 0.6, A= 0.6, Q,= 1, U = 20,
Q1 =15, B'=2 and B = 3 for fixed wave numbers x =
0.4 and x = 0.7. This shows that stable solute gradient
has a stabilizing effect. In figures 3, R; is plotted
against U for F; — 0.6, e= 0.6, A =1, Q;=15,B'=2,B
=3 and S; = 7 for fixed wave numbers x = 0.4 and x
=0.7. The Rayleigh number increases with increase in
magnetic viscosity parameter showing its stabilizing
effects on the thermosolutal instability. In figures 4, R1
is plotted against Qi for F1 = 0.6, «.
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| A=1, U=20, Q,=15, B'=2 and wave number x=0.4 and x =0.7. |
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Fig 2. R, is plotted against S, for fixed values of F;=0.6, £=0.6, A=1,
U=20, Q,;=15, B'=2, B = 3 and wave number x =0.4 and x =0.7.
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Fig 3. R, & pbtted agamst U for fixed values of F;=0.6, £=0.6, 3=1,
Q,=15, B'=2, B=3, S,=7 and wave number x =0.4 and x =0.7.
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Fiz 4. R, is plotted against Q, for fixed valwes of F1=0.6, £=0.6, A=1,
B'=2, B=3; §,=7, U=20 and wave number x =0.4 and x =0.7.
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=06,A=1,B"=2,B=3,S;, =7, and U = 20 for fixed

wave numbers x = 0.4 and x =0.7. This shows that

magnetic field has a stabilizing effect. In figures 5, R;

is plotted against F, fore =0.6, A =1,B'=2,B=3,S; =

7, U =20 and Q; = 15 for fixed wave numbers x = 0.4

and x = 0.7. This shows that couple-stress has a

stabilizing effect.
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